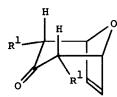
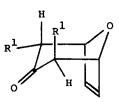

REACTION OF α, α' -dibromo ketones with iron carbonyls in the presence of five-membered heterocycles¹


R. Noyori, Y. Baba, S. Makino, and H. Takaya Department of Chemistry, Nagoya University, Chikusa, Nagoya, Japan (Received in Japan 5 March 1973; received in UK for publication 3 April 1973)

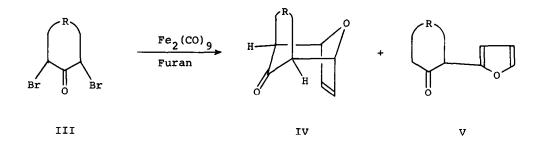

The dehalogenation of α, α' -dibromo ketones with iron carbonyls provides a new method for carbon-carbon bond formation.² This paper describes the reaction with certain five-membered heterocyclic compounds.

Furan derivatives serve as an efficient receptor toward the reactive intermediates generated in the reaction of $Fe_2(CO)_9$ with dibromo ketones. For instance, when a mixture of 2,4-dibromo-2,4-dimethylpentan-3-one (I, $R^1 = R^2 = CH_3$) and $Fe_2(CO)_9$ (1:1.2 mole ratio) in furan was heated at 40° for 24 hr under a nitrogen atmosphere, the cyclic adduct II ($R^1 = R^2 = CH_3$, $R^3 = H$) was obtained in 96% yield. Secondary bromides afforded a mixture of stereoisomeric adducts, cis-II and trans-II, in good yields. Reaction of dibromides derived from cyclic

I

II

<u>cis</u>-II


trans-II

ketones yielded the tricyclic adducts of type IV in addition to some substitution products V. Nmr analysis³ indicates that the methylene chains of IV are axial, whereas the α substituents of <u>cis</u>-II are both equatorial. Some examples of the coupling reaction are given in Table I. α, α' -Dibromoacetone failed to give the furan adduct. Iron pentacarbonyl could be used as the reducing agent, but it was less effective.⁴

Dibromide	Receptor	Product and % yield ^b (cis:trans ratio ^C)
I $(R^{1} = R^{2} = CH_{3})$ I $(R^{1} = CH_{3}, R^{2} = H)$ I $(R^{1} = CH_{3}, R^{2} = H)$ I $(R^{1} = (CH_{3})_{2}CH, R^{2} = H)$ I $(R^{1} = C_{6}H_{5}, R^{2} = H)$ III $(R = (CH_{2})_{3})$ III $(R = (CH_{2})_{4})$ III $(R = (CH_{2})_{5})$	Furan Furan 2,5-Dimethylfuran ^d Furan Furan Furan Furan	II, 96 ^C II, 90 ^C (50:50) II, ^e 73 ^C (100:0) II, ^f 97 ^{C,g} (77:23) II, ^h 90 (50:50) ⁱ IV, ^j 35, ^C and V, 35 IV, ^k 61, and V, 9 IV, ¹ 60, and V, 23
III $(R = (CH_2)_9)$	Furan	IV + <u>trans</u> -II, ^m 52 (14:86), and V, 34

Table I. Reaction of Dibromo Ketones with Fe2(CO), in the Presence of Furans^a

^a Unless otherwise stated, reactions were carried out in refluxing furan (10 ml) for 20-40 hr using 2.0 mmoles of the dibromide and 2.4 mmoles of $Fe_2(CO)_9$. ^b Isolated yield. ^C Determined by nmr. ^d Reaction was performed in benzene containing 2,5-dimethylfuran (3 equiv to I). ^e Highly subliming. Mp <u>ca</u>. 70° (sealed tube). ^f <u>cis</u>-II, mp 34.5-35.5°. <u>trans</u>-II, mp 34-35°. ^g Yield based on unrecovered starting bromide (76% conversion). ^h <u>cis</u>-II, mp 135-135.5° (lit.³ 134-135°). <u>trans</u>-II, mp 151-152° (lit.³ 152-153°). ⁱ Relative amount of isolated products. ^j Mp 45.5-46°. ^k Mp 50-51°. ¹ Mp 50-52°. ^m IV, mp <u>ca</u>. 150° (sealed tube). <u>trans</u>-II ($R^1R^1 = (CH_2)_9$), mp 58-60°.

Reaction of the dibromide I with <u>N</u>-methylpyrrole resulted in the formation of the α - and β -substitution products, VI and VII, respectively. Similar reaction of I with thiophene afforded only the α -substitution product VIII. Several examples are summarized in Table II.

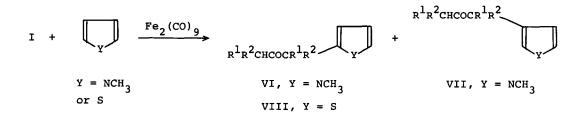
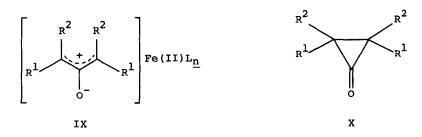



Table II. Reaction of a, a'-Dibromo Ketones with N-Methylpyrrole or Thiophene^a

Dibromide	Receptor	Product and % yield ^b (α:β ratio)
$I (R^1 = R^2 = CH_3)$	N-Methylpyrrole	VI + VII, 82 (38:62)
$I (R^{1} = CH_{3}, R^{2} = H)$	<u>N-Methylpyrrole</u>	VI + VII, 81 (59:41)
$I (R^1 = (CH_3)_2 CH, R^2 = H)$	<u>N</u> -Methylpyrrole	VI + VII, 77 (80:20)
$I (R^{1} = CH_{3}, R^{2} = H)$	Thiophene	VIII, 37 ^C

^a Reaction was performed in dry benzene (10 ml) using 2.0 mmoles of I, 2.4 mmoles of $Fe_2(CO)_9$, and 6.0 mmoles of <u>N</u>-methylpyrrole (or thiophene) at 40° for 20-40 hr. All the products gave spectral data consistent with the assigned structure. ^b Determined by nmr. ^c Yield based on the consumed starting bromide (40% conversion).

The foregoing observations can be explained by assuming the intermediacy of zwitterions IX interacting with an iron atom.⁵ The reactivity of the intermediate should be compared with those of the cyclopropanones X, structurally related species. Alkylated cyclopropanones undergo cycloaddition in the absence of metals with furan⁶ or <u>N</u>-methylpyrrole,⁷ but not with thiophene⁶ yielding II and the tropinone derivative, respectively. The latter was reported to be thermally labile and readily be converted to the open-chain isomer of type VI. Competition kinetics revealed that the intermediate IX (R¹ = CH₃, R² = H; configuration unknown) reacts with cyclopentadiene^{2a} 1.3 times faster than with furan (25° in tetrahydrofuran). The observed selectivity is somewhat lower than that of the cycloaddition of 2,2-dimethylcyclopropanone (<u>k</u>(cyclopentadiene)/<u>k</u>(furan) = 2.5-2.9).⁶

Acknowledgement: We are grateful to the Matsunaga Science Foundation for financial support of this research.

REFERENCES

- Carbon-Carbon Bond Formations Promoted by Transition Metal Carbonyls. V. Part IV: R. Noyori, Y. Hayakawa, S. Makino, and H. Takaya, <u>Chemistry Lett.</u>, 3 (1973).
- (a) R. Noyori, S. Makino, and H. Takaya, J. <u>Amer. Chem. Soc.</u>, <u>93</u>, 1272 (1971);
 (b) R. Noyori, K. Yokoyama, S. Makino, and Y. Hayakawa, <u>ibid</u>., <u>94</u>, 1772 (1972).
- 3. R. C. Cookson, M. J. Nye, and G. Subrahmanyam, <u>J. Chem. Soc. C</u>, 473 (1967).
- 4. The reaction using Zn-Cu couple as the reducing agent: H. M. R. Hoffmann, K. E. Clemens, and R. H. Smithers, J. <u>Amer. Chem. Soc.</u>, <u>94</u>, 3940 (1972). See also the preceding paper.
- R. Noyori, Y. Hayakawa, M. Funakura, H. Takaya, S. Murai, R. Kobayashi, and S. Tsutsumi, J. <u>Amer</u>. <u>Chem</u>. <u>Soc</u>., <u>94</u>, 7202 (1972).
- 6. N. J. Turro, S. S. Edelson, J. R. Williams, T. R. Darling, and W. B. Hammond, <u>ibid</u>., <u>91</u>, 2283 1969).
- 7. N. J. Turro and S. S. Edelson, *ibid.*, <u>90</u>, 4499 (1968).